
SOUTHERN AFRICA ENERGY PROGRAM (SAEP)

West Africa Regional Energy Summit. Senegal

December 2019

USAID Southern Africa Energy Program (SAEP) Overview

The USAID Southern Africa Energy Program's assists in the development of generation, transmission and distribution whilst promoting investment in the energy sector for a brighter, more sustainable future.

USAID Southern Africa Energy Program (SAEP) Overview (cont.)

OUR OBJECTIVE

Increase investment in electricity supply and access in Southern Africa by strengthening the regional enabling environment and facilitating transactions through technical assistance

OUR GOALS

Assist in the development of:

- I. Generation capacity 3,000 MW
- 2. Transmission capacity 1,000 MW
- 3. New connections 3 million

PROGRAM OUTCOMES / TASK AREAS

Outcome I: Improved Regulation, Planning and Procurement for Energy **Outcome 2:** Improved Commercial Viability of Utilities Outcome 3: Improved Regional Harmonization and Cross-Border Trade Outcome 4: Scaled Renewable Energy (RE), Energy Efficiency (EE) and Access **Outcome 5:** Increased Human and Institutional Capacity

Battery Storage as a Renewable Energy (RE) Technology

Why Batteries?

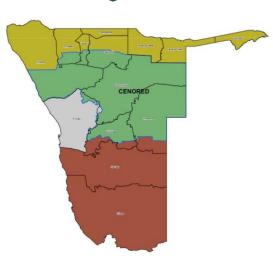
The role of grid-scale Battery Energy Storage Systems (BESS) has gained prominence because of the increasing need for power system flexibility coupled with the rapid decline in the cost of storage technologies such as lithium-ion batteries.

Battery storage facility at the Tsumkwe plant in Namibia.

More utilities and governments are seeking to determine whether battery storage is a cost-effective option for enabling power systems to integrate large shares of variable renewable energy.

Source: <u>https://www.climatelinks.org/blog/grid-</u> scale-battery-key-renewable-energy-integration

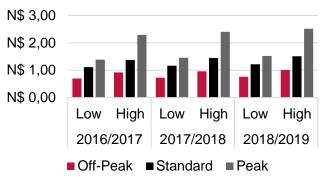
CENORED Overview


NamPower

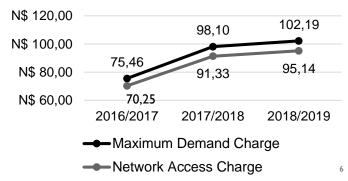
- Namibia's national utility responsible for Gx, Tx and energy trading (imports & procurement from large IPPs) and operates in 15 municipalities
- Distribution is operated by Regional Electricity Distributors (REDs) or Municipalities

CENORED - Central North Regional Electricity Distributor

- CENORED, ERONGORED, and NORED are the 3 REDs in Namibia
- CENORED distributes electricity to the various towns and settlement areas of Central and Northern Namibia and covers more than 120,000 square km
- Strategic objectives include improving cost efficiency and increasing embedded RE generating capacity to 20 MW or greater if energy storage proves viable


CENORED Case Study

CENORED wanted to evaluate the costs and benefits of using battery storage


Key Considerations:

- Increasing time-of-use (TOU) tariffs, including fast-growing maximum demand and network access charges
- Significant discrepancies between peak and off-peak energy charges
- Management of variable renewable energy from solar PV resources
- CENORED is interested in being an offtaker of battery services, rather than owning and operating the facilities

Energy Charges (N\$/kWh)

Capacity Charges (N\$/kVA/month)

BESS Project LIFECYCLE

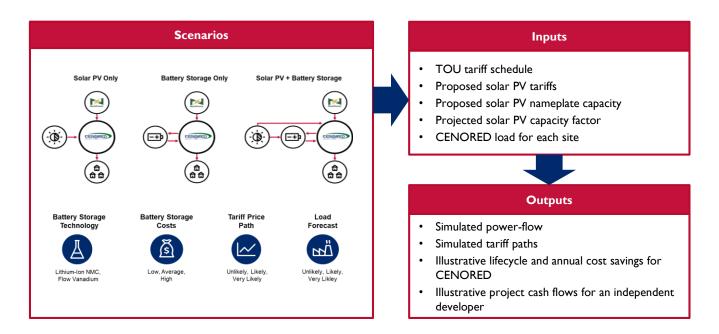
A BESS project can be broken up into five phases: planning, procurement, deployment, operations and maintenance, and decommissioning.

Planning	Procurement	Deployment	Operations and Maintenance	Decommissioning
 BESS project planning involves identifying and evaluating potential BESS applications and translating them into a set of project requirements. Key Activities: Use Case Evaluation Ownership and Contract Structure Selection Documentation of Minimum Requirements 	If the planning process determines that a BESS project is feasible, the prospective BESS owner or offtaker initiates a procurement based on the defined minimum requirements. Key Activities: • Procurement Development • Bid Evaluation and Contract Issuance	 After the procurement has taken place, the BESS is installed, tested, and commissioned. Key Activities: Site and System Engineering Permitting Product Installation, Connection, and Integration Project Commissioning and Site Acceptance Testing 	 Once the system has been commissioned and approved for use, the BESS must be operated and maintained for the life of the project. Key Activities: Handoff to Distribution/Syste m Operations Maintenance Environmental and Safety Reporting Operational Needs Revisions and Recommissioning (as required) 	 When the project is no longer viable due to a predetermined end date, safety or reliability issues, or degradation, the BESS is decommissioned. Key Activities: Decommissioning Second Use / Relocation Recycling or Disposal

Source: ESIC Energy Storage Implementation Guide. EPRI, Palo Alto, CA: 2017. 3002010896.

The CENORED Case - Relevant Applications

Туре	Application	Relevance & User(s)		
Bulk Storage	Energy Time-Shift		Primary driver of analysis (CENORED)	
Ponowables Integration	Renewables Capacity Firming		Primary driver of analysis (CENORED)	
Renewables Integration	Renewables Ramp Rate Control		Dependent on regulatory requirements and total vRE supply levels (CENORED)	
	Frequency Regulation	\bullet	Dependent on existing services (CENORED and/or NamPower)	
Ancillary Services	Voltage Support	\bullet	Dependent on existing services (CENORED and/or NamPower)	
	Spinning/Non-Spinning Reserves	\bullet	Dependent on existing reserves and regulatory requirements (NamPower)	
	Black Start	\bigcirc	Multiple black start plants already in production (NamPower)	
Transmission and	T&D Upgrade Deferral		Dependent on load forecasts and infrastructure capacity (NamPower)	
Distribution (T&D)	Transmission Congestion Relief	\bullet	Dependent on load forecasts and infrastructure capacity (NamPower)	
	Legend: Very Low	Low	Unknown 🕒 High 🕒 Very High	


The CENORED Case - Relevant Technologies

				Comp	etitivenes	sin SA
Technology	Maturity / Bankability	Advantages	Disadvantages	2016– 2020	2021- 2025	2026- 2031
Advanced Lead Acid	Mature / Strong	Mature technologyCapital cost relatively low	Low cycle life Limited DoD			
Sodium Sulfur Battery	Mature / Strong	 Limited cycle life Requires external heat system High temperature system Large daily self-discharge 	High power and energy densityLonger discharge times than Li-ion			
Lithium-Ion	Commercial / Strong	 High round trip efficiency Continuing performance improvements and manufacturing cost reductions 	 Limited but improving cycle life Deep discharge cycles lower lifetime Thermal management in harsh conditions 			
Vanadium Flow	Demo / Moderate	 Mature for a flow technology Vanadium is a SA resource High cycle life, full DoD 	 Lower round trip efficiency Requires mechanical systems High cost of Vanadium 			
Zinc Bromine Flow	Demo / Moderate	 High cycle life, full DoD Less expensive electrolyte than Vanadium Small daily self-discharge 	 Lower round trip efficiency Requires mechanical systems Power and energy not fully independent 			
Iron-Chromium Flow	Demo/ Weak	 Lower round trip efficiency Low energy density Requires mechanical systems 	 Power and energy scale independently Small daily self-discharge High cycle life, full DoD 			
Liquid Metal Batteries	R&D / Weak	 Long electrode life Low cost potential Rapid charge/discharge 	 Liquid layers sensitive to motion High temperature – requires active heating 			

Assess the initial viability of battery storage

CENORED model relied on tariff, solar PV generation, and CENORED load data to generate a simulated power-flow and tariff paths, as well as illustrative CENORED cost savings and project cash flows.

Model Dashboard

Site:	
Battery Type:	Lithium-Ian NPIC
Sconorin:	Seler PV+BESS
Project Developer:	Saler PV+BESS
BESS Cart Level:	Average
Land Grauth:	Very Likely
HamPauer Tariff Path:	Very Likely

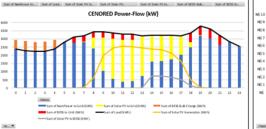
Total Cart Savingr (H\$)	N\$ 152,650,005
Average Cart Savingr per Tear (M\$)	N\$ 7,632,944
Project Developer Financial Matrice	
Hat Procent Telus (H\$)	N\$ 1,231,284,253
Internal Rate of Beturn (%)	9.885
Payback Parind (Tears)	

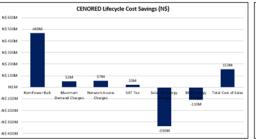
Day Type of Fincel Year of

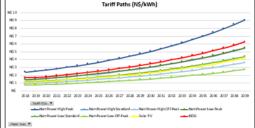
Paak Domand to Data (06/2017)	5.8	MIA
Main Transformer	10	MIA
Distribution.	11	kΨ
Selar PV Pewer Capacity	2.5	MM
BESS Installed Pauer Capacity	0.875	MW
BESS Installed Energy Capacity	3.5	MMA
BESS Effective Energy Copacity	2.45	MWK
Battery DC Black Overrising	20%	
Capacity Degradation Factor	90%	×

BESS Performence Spece	Talas	Unitz
Round Trip Efficiency	86.00%	x
Solf-Dirchorge Larrer per Haur	0.01/	×
Dopth af Dir chargo	100%	×
Maximum Charge Rate	0.25	
Cycle Life @ 100% DeD	4,000	Cycler
Calondar Life	10	Years

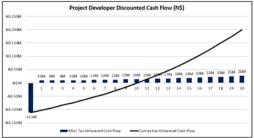
Land Growth & HMD	Talas	Unitz
CENORED Land Growth: FY20+	1.60%	×
CENORED NMD Margin	18.002	×

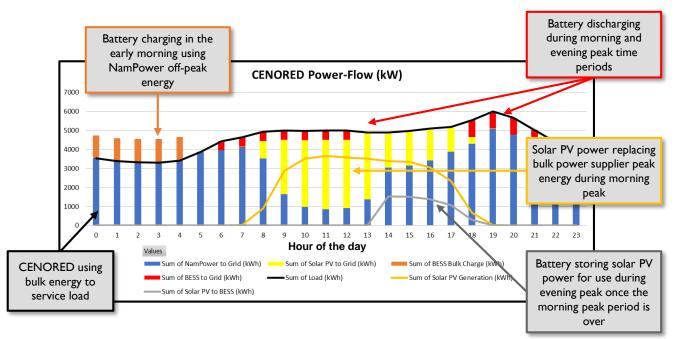

Price Path	Telse	Units
NamPawerEnergy Charge: FY20	4.95%	x
NomPassorEnorgy Charge: FY21+	6.70%	×
NamPauer Domand Charge: FY20+	10.642	X
NomPauer Access Charge: FY20+	10.64×	x
Salar PV Energy Charge: FT20+	6.76%	×
Salar PV Energy Charge: FT20+ (GTT)	9.40%	×
BESSEnergy Charge: FY21+	6.70×	x
BESS Capacity Charge: FY21+	0.00%	×


BESS Cartr	Telse	Unitz
Land	\$7,000.00	NS
AC System	\$955,605.00	NS
DC System	\$17,452,365.00	NS
Other BESS Capital Carts	\$2,766,225.00	NS
EPC	\$2,761,195.50	NS
Augmentation	\$9,203,985.00	N\$droplacomont
ORM	\$317,612.93	N\$/yeer
Extended Warranty"	\$317,612.93	NSfyeer

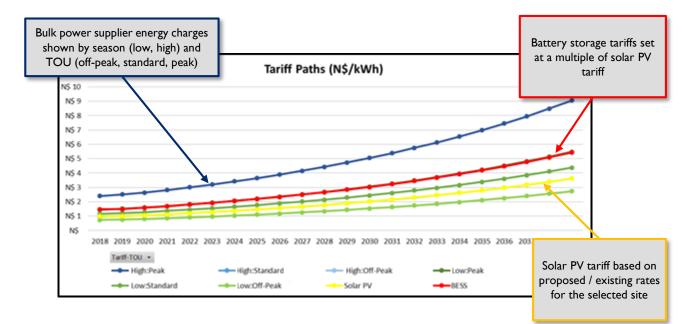

Maxamar initial graduat warranty thraugh Fraject Four 2

Saler PV Carts	Talas	Unitz	
Land	\$35,000.00	N\$	
Salar PV System Capital	\$87,500,000	NS	

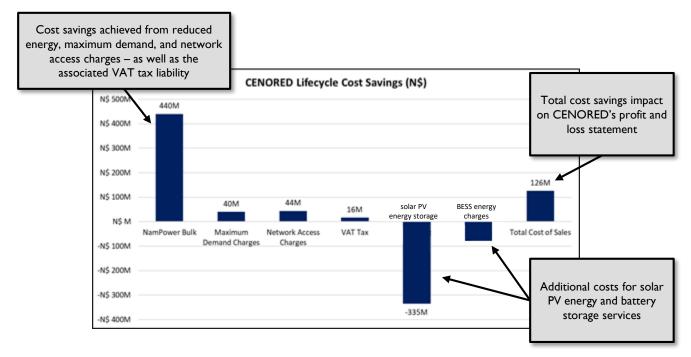

BESS OPER Cart Celculations	Talue	Unitz
EPO	15.00%	X of AC/DC System Casts
Augmentation	50.00%	X of AC/DC System Casts
ORM	1.50%	X of Installed Capital Casts
Extended Warranty	1.90%	× of Installed Capital Carts


Awrage of Price (N6/With)

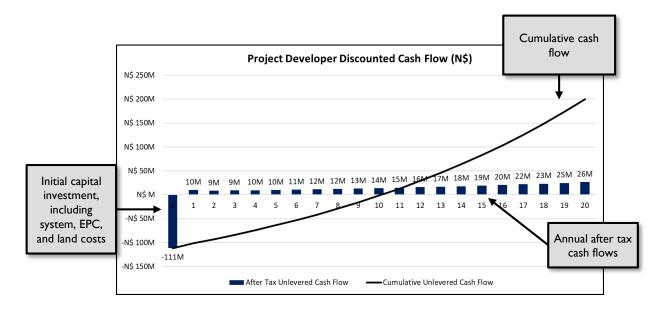
Model Outputs: Simulated Power Flow


The simulated power-flow shows the exchange of energy between CENORED, bulk power supplier, the solar PV plant, the battery storage system, and the load on a week day, Saturday, or Sunday

Model Outputs: Simulated Tariff Paths


The simulated tariff paths show the relative price per kWh of the bulk power supplier TOU tariffs, solar PV tariffs, and battery storage tariffs

Model Outputs: Illustrative CENORED Cost Savings


The illustrative CENORED cost savings show the potential savings that could be achieved from the selected scenario relative to business as usual.

Model Outputs: Illustrative Project Cash Flows

The illustrative project cash flows demonstrate the potential return on investment for an independent project developer.

Challenges and Issues experienced in the CENORED case

Challenge Type	Description
Finance / Procurement	 Necessary to value and stack as many use cases or services as possible Grid-scale battery storage procurement test cases required in the region Unknown level of interest and terms and conditions of funders/financiers
Technical	 Which chemistry/technology is appropriate for the region? Degradation and requirements for augmentation for our region are not well known Where are the technical skills?
Regulations	 Should a BESS be issued with a license as a generator or as a load? How should battery storage services be incorporated into existing tariff regimes? Utility-owned vs battery storage as a service

Results of our approach with CENORED – may be applied to other <u>counterparts</u>

Allows decisions about resourceinvestment early in the process

SAEP's approach was to quickly develop models that could enable decision-making through an iterative process with refinements of the model after each iteration and decision-point

Narrows the scope of analysis after each iteration of the model

CENORED was able to eliminate 3 sites after the initial iteration of analysis and proceeded to detailed analysis with a smaller set of sites. In the next iteration of investigation, CENORED will only focus on the most viable sites

Enables informed discussions with stakeholders

Using outputs from each phase of analysis, the utility was able to have discussions with counterparts based on research and analysis. This enhanced the quality of discussion outputs

Includes legal, regulatory and procurement considerations

SAEP included a scan of the regulatory environment as well as procurement approaches to enable CENORED to identify barriers and enablers that they need to consider to make their battery storage project a success

What does the future look like for customers?

Future Price Paths

- We know that the battery storage technology is **transformational**, **scalable** and **dispatchable**
- When coupled with other technologies (e.g. PV), may be one of the solutions leading to effective tariff and pricing options which may invariably lead to cheaper options for the customer

Support for Our Regional Grids

- With the global trends on the use of battery storage to support Electricity Grids, there is a significant and economic scalability in installing battery systems before the meters than with individual customers.
- Grid stabilization will support the access needs for the end customer
- According to an article from ee publishers South Africa, escalating electricity prices are pushing grid parity, where the cost of generating solar energy is nearing the same cost of purchasing power from the electricity grid, encouraging more self-consumption (and low-cost storage) Article <u>Behind-the-meter functionality offers energy independence</u>

Tshegofatso Neeuwfan (Presenter) – Deputy Lead RE & EE tneeuwfan@southernafricaenergy.org

Craig VanDevelde – Chief of Party cvandevelde@southernafricaenergy.org

Liz Pfeiffer – Deputy Chief of Party - Technical lpfeiffer@southernafricaenergy.org

